
CS 61A Discussion 7
- Orders of Growth & Trees -

March 09, 2017

Announcements

MT2 is next Wednesday (3/15) from 8-10pm. Fill out the conflict form by Friday!

There will be a guerrilla section this Saturday from 12-3pm in 247 Cory.
- Topics covered: OOP (/inheritance), orders of growth

No discussion next week! We’ll be grading.

Today: orders of growth (a method for measuring
efficiency), object-oriented Trees

Orders of Growth
“Are my programs

efficient?”

(answer: no)
(jk)

Wait.
How do you know if a
program is efficient?

How do you know if a program is efficient?

You might think, well, look at how long it takes to run.

If it takes a day, is that efficient? A day sounds like a lot at first.

But maybe you’re immortal, like Paul Hilfinger, and a day is nothing to you. Or
maybe your problem is HUGE… maybe it’s the problem of counting every molecule in
the universe, twice. And if that’s the case, one day is actually miraculous. Moral
of the story: always define the size of the problem. “Efficiency” only makes sense
if you know the size of the problem!

How do you know if a program is efficient? (cont.)

Moreover, maybe time is nothing to you. You could be a time traveler.

(...with only 1MB of RAM.)

Here, it’s space you care about. How much memory is your program going to consume
as a function of input size, compared to all other programs that do the same
thing?

Programs can be efficient in different ways.

so as a tl;dr

Efficiency is relative.

To define efficiency, we’ll look at how many resources our program uses in
relation to the size of the problem.

This is where orders of growth come in.

Orders of Growth, formalized

An order of growth is a function describing how something scales (usually a
resource; time or space) with respect to some input.

You’ll hear things like this: “what is the order of growth of <function-name>’s
running time, in terms of <input-name(s)>?”

Common orders of growth:

O(1), O(logn), O(n), O(nlogn), O(nc), O(cn)... [pretty much any mathematical
function of the input can be an order of growth]

Orders of Growth, formalized (cont.)

Orders of growth allow us to
assert that certain functions run
more quickly (as a function of
their input), or scale better,
than others.

This is what happens when all of
the 170 students run their garbage
O(n4)-time project code on the
instructional machines1 →

1 This isn’t actually that great a representation of runtime growth, since a bunch of people are probably just looping
indefinitely and running lots of instances.

Orders of Growth: Visual Examples

A rock; we could
argue that its
growth is an O(1)
function of time

Age increases linearly over
time, of course

The wheat and chessboard problem

A Rough Approximation

We don’t care about small inputs; we can always handle those pretty easily anyway.
We care about what happens as the input size gets REALLY BIG (as it approaches
infinity, even!). Small input sizes aren’t necessarily representative anyway:

(Thanks to Jerome Baek for this great visual!)

A Rough Approximation, continued

Asymptotically, only the highest-order term (or terms if there are multiple input
variables) in the growth function matters. Therefore, that’s the only term we
retain.

ex. n3 + 40000n2.1 + 26 becomes n3

For similar reasons we’ll also omit constant multipliers for that first term (it
helps with standardization, and anyway we want to stay focused on the big –
asymptotic – picture).

65√n + logn + log(logn) becomes √n

Summary So Far

An order of growth is just a function that depicts how stuff (like running time)
scales. O(f(n)) means that aforementioned “stuff” increases no faster than the
f(n)-class of functions as n gets larger and larger. This can be useful for
guaranteeing efficiency in the temporal or spatial domain.

When determining an order of growth, do two things:

1. Drop lower-order terms.
2. Drop multiplicative constants.

Neither of these descriptors is asymptotically relevant.

Vaguely Mathematical Depiction
ft. big theta

Big-Theta

The definition of Big-Theta:

If we say that the order of growth is
f(n), then there exist positive constants
k1 and k2 such that the ACTUAL order of
growth is sandwiched between k1·f(n) and
k2·f(n) for sufficiently large values of
n.

In this diagram, the “actual” order of growth
is the red line. The blue lines are the upper
and lower bounds.

Big-Theta, cont.

If the growth function (e.g. runtime as
a function of input size) is ALWAYS
sandwiched between 0.5n and 1n when n is
really large, then the order of growth
would be Θ(n).

In other words, if k1 = 0.5 and k2 = 1 in
the diagram to the right, then the
running time can be said to be Θ(n).

Big-O

The definition of Big-O:

If we say that the order of growth is
f(n), then there exists a constant k2
for which the ACTUAL order of growth is
BELOW k2·f(n) for sufficiently large
values of n.

(Basically, it’s only the upper bound.)

Big-O vs Big-Theta

In this class (and in practice), you try
to use Big-O as Big-Theta because it’s
not very informative otherwise (i.e.
pretty much everything is technically
O(nn), but who cares?).

tl;dr Even though Big-O technically only
refers to an upper bound, we want you to
find the “tightest” bound.

Big-O vs Big-Theta

So if k1 = 0.5 and k2 = 1 in our diagram,
we’d say that the order of growth is Θ
(n) ≈ O(n).

Determining Order of Growth

Approach

If faced with a function of unknown time complexity:

Go through the function line-by-line, determining approximately how much time each
block of code takes as a function of n. Then add them all together (by “them” I
mean your estimation for each region of code) and drop lower-order terms. That’s
pretty much it.

If there’s recursion (which there will be), figure out how much work there is to
be done in each call and how many calls there’ll be. Then multiply those things
together.

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) \

+ carpe_noctem(n - 2)

def yolo(n):
if n <= 1:

return 5
sum = 0
for i in range(n):

sum += carpe_noctem(n)
return sum + yolo(n - 1)

Question: What is the order of growth
in n of the runtime of yolo, where n
is its input?

Answer:
- Well, going through each line...

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2)

def yolo(n):
if n <= 1: # this block is O(1) on its own

return 5
sum = 0
for i in range(n):

sum += carpe_noctem(n)
return sum + yolo(n - 1)

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2)

def yolo(n):
if n <= 1: # this block is O(1) on its own

return 5
sum = 0 # O(1)
for i in range(n):

sum += carpe_noctem(n)
return sum + yolo(n - 1)

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2)

def yolo(n):
if n <= 1: # this block is O(1) on its own

return 5
sum = 0 # O(1)
for i in range(n): # this block is O(n)

sum += carpe_noctem(n)
return sum + yolo(n - 1)

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2)

def yolo(n):
if n <= 1: # this block is O(1) on its own

return 5
sum = 0 # O(1)
for i in range(n): # this block is O(n),

sum += carpe_noctem(n) # times whatever the OOG of carpe_noctem is
return sum + yolo(n - 1)

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2)

def yolo(n):
if n <= 1: # this block is O(1) on its own

return 5
sum = 0 # O(1)
for i in range(n): # this block is O(n),

sum += carpe_noctem(n) # times whatever the OOG of carpe_noctem is
return sum + yolo(n - 1) # and then there’s another recursive call

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):
if n <= 1: # this block is O(1) on its own

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2) # TWO recursive calls

def yolo(n):
if n <= 1: # this block is O(1) on its own

return 5
sum = 0 # O(1)
for i in range(n): # this block is O(n),

sum += carpe_noctem(n) # times whatever the OOG of carpe_noctem is
return sum + yolo(n - 1) # and then there’s another recursive call

An Example [Summer 2012 Final | Q2(c)]

Recursive call tree for carpe_noctem (authentic handwritten edition):

An Example [Summer 2012 Final | Q2(c)]

The call tree is a binary tree of depth (n - 1). There are at most 2k+1 - 1 nodes
in a binary tree of depth k, which means that there are at most 2(n-1)+1 - 1 = 2n -
1 nodes in this tree.

Each of these nodes represents a call to carpe_noctem, and we do O(1) work in the
body of each of these calls, so a single carpe_noctem call produces O(2n)
recursive carpe_noctem calls and O(1) * O(2n) = O(2n) work overall. Conclusion:
carpe_noctem’s growth function is O(2n).

An Example [Summer 2012 Final | Q2(c)]

The call sequence for yolo, meanwhile, is a lot simpler. It should be clear from
the above sketch that yolo(n) involves n calls to yolo. Accordingly, we know that
the stuff in the body of yolo happens n times in total.

An Example [Summer 2012 Final | Q2(c)]

def carpe_noctem(n):
stuff happens here, but all we need to know is that it’s O(2n)

def yolo(n):
O(1) stuff
for i in range(n): okay, we do the stuff in the loop n times

sum += carpe_noctem(n) # carpe_noctem is O(2n)
return sum + yolo(n - 1) # and then all of this stuff happens n times again

In conclusion: the body of yolo is O(n * 2n), and then that code gets executed n
times. Therefore yolo is, holistically speaking, an O(n * n * 2n) = O(n2 * 2n)
function because that’s how much work we do as a result of one yolo(n) call.

General Heuristics (Not Guarantees!)

Warning: this stuff definitely isn’t always going to be true (especially in the
case of exam questions designed to filter out confused students).

- When there are c recursive calls in the function body (tree recursion), there
tends to be O(cn) calls overall (exponential growth).

- Double-nested for-loops tend to indicate that you’ll do the stuff in the
inner loop n2 times.

- If you make multiplicative progress during every step (e.g. by dividing
problem size by 2 or multiplying something by 3), it’s likely logarithmic
growth.

Individual Function Descriptions (+ Exercises)

Live Answer Submission Link

(Process: I review one classification at a time, and present a function after each
one. Your job is to identify the order of growth of each function’s running time.)

It’d be great if you guys can anonymously submit your answers as we go, so I can
see how you’re doing and figure out how difficult everything is.

Link to live / anonymous poll: [edit: done through Poll Everywhere, see alt.
version of slides]

Don’t worry if your answer is different from everyone else’s.

DISCLAIMER In the following slides, we treat the
growth function as a runtime descriptor. However,
note that orders of growth can be used to describe
any phenomena that scale as a function of their
inputs (memory is another big one, for example).

DISCLAIMER 2 I say Big-O in pretty much all of
these slides, but I’m really only doing that because
“Θ” is a damn pain to type.

I say Big-O, but I mean Big-Θ.

DISCLAIMER 3 I have a lot of slides on OOG. But
if you’re primarily concerned with exams (not a
perspective I recommend :/), don’t expect this to
be representative of a topical distribution on a MT.
...OOG is usually like two points on a test.

O(1)
Constant time. Best order
of growth for scalability;
runtime is not affected by

the input size.

def const(n):
n = 902 + 54
return ‘hamburger’

O(logn)
Logarithmic time. Amazingly
scalable; a multiplicative
increase in input size
leads to an additive

increase in running time.

def loga(n):
if n <= 1:

return 1
return n * loga(n // 2)

Exercise 1

def mystery1(n):
n, result = 5, 0
while n <= 3000:

result += const(n // 2)
n += 1

return result

Reminder: we want the order of growth of the runtime a function of n.
Example answers: O(1), O(n), O(n2)...

Exercise 1 Solutions

def mystery1(n):
n, result = 5, 0
while n <= 3000:

result += const(n // 2)
n += 1

return result

O(1).
Notes: The input n doesn’t even matter!

O(√n)
Square-root time, aka

knockoff logarithmic time
(runtime still increases
slowly with input size).
Better than O(n), but

rarely observed.

def sqroot(n):
lim = int(sqrt(n))
for i in range(lim):

n += 45
return n

Exercise 2

def mystery2(n):
if n < 0 or sqrt(n) <= 50:

return 1
return n * mystery2(n // 2)

Exercise 2 Solutions

def mystery2(n):
if n < 0 or sqrt(n) <= 50:

return 1
return n * mystery2(n // 2)

O(logn). sqrt(n) <= 50 is equivalent to
n <= 2500, so this ends up being a standard
logarithmic-time algorithm

O(n)
Linear time. Still very

scalable; adding a constant
to the input size also adds
a constant to the runtime.

def lin(n):
if n <= 1:

return 1
return n + lin(n - 1)

Exercise 3

def mystery3(n):
result = 0
for i in range(n // 10):

result += 1
for j in range(10):

result += 1
for k in range(10 // n):

result += 1
return result

Exercise 3 Solutions

def mystery3(n):
result = 0
for i in range(n // 10):

result += 1
for j in range(10):

result += 1
for k in range(10 // n):

result += 1
return result

O(n). The number of iterations in the j-loop
is based on a constant, and for large values
of n (specifically when n > 10) there are 0
iterations in the k-loop

O(n2)
Quadratic time. Still

polynomial, so it could be
worse; multiplying input size
by a constant factor ends up
multiplying the runtime by
the square of that factor.

def quad(n):
if n <= 1:

return 1
r = lin(n) * quad(n - 1)
return r

O(2n)
Exponential time. Not

scalable at all; identifies
problems as intractable.
Adding to the input size
multiplies the runtime.

def expo(n):
if n <= 1:

return 1
r1 = expo(n - 1) + 1
r2 = expo(n - 1) + 2
return r1 * r2

A General Timing Comparison

n = 10 n = 50 n = 100 n = 1000

logn 0.0003s 0.0006s 0.0007s 0.0010s

sqrt(n) 0.0003s 0.0007s 0.0010s 0.0032s

n 0.0010s 0.0050s 0.0100s 0.1000s

nlogn 0.0033s 0.0282s 0.0664s 0.9966s

n2 0.0100s 0.2500s 1.0000s 100.00s

n6 1.6667m 18.102d 3.1710y 3171.0c

2n 0.1024s 35.702c 4x1016c 1x10166c

n! 362.88s 1x1051c 3x10144c 1x102554c

← Time required to process n
items at a speed of 10,000
operations per second, using
eight different algorithms

s = seconds
m = minutes
d = days
y = years
c = centuries

Source:
http://www.ccs.neu.edu/home/jaa
/CS7800.12F/Information/Handout
s/order.html

http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html

Graphical Summary

Exercise 4

def mystery4(n):
if n > 0:

r1 = mystery4(-n)
r2 = mystery4(n - 1)
return r1 + r2

return 1

Exercise 4 Solutions

def mystery4(n):
if n > 0:

r1 = mystery4(-n)
r2 = mystery4(n - 1)
return r1 + r2

return 1

O(n). The first recursive call can never go
anywhere

Saving the best for last:
a single slide on the Tree class

The Tree class

You guys already know trees. This is the same thing as the ADT version, except
formalized using Python’s object system. You can mutate these trees by modifying
their attributes. Yay!

class Tree:
 def __init__(self, label, branches=[]):
 for b in branches:
 assert isinstance(b, Tree)
 self.label = label
 self.branches = branches

 def is_leaf(self):
 return not self.branches

