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Announcements

MT2 is next Wednesday (3/15) from 8-10pm. Fill out the conflict form by Friday!

There will be a guerrilla section this Saturday from 12-3pm in 247 Cory.
- Topics covered: OOP (/inheritance), orders of growth

No discussion next week! We’ll be grading.



Today: orders of growth (a method for measuring 
efficiency), object-oriented Trees



Orders of Growth
“Are my programs 

efficient?”

(answer: no)
(jk)



Wait.
How do you know if a 
program is efficient?



How do you know if a program is efficient?

You might think, well, look at how long it takes to run.

If it takes a day, is that efficient? A day sounds like a lot at first.

But maybe you’re immortal, like Paul Hilfinger, and a day is nothing to you. Or 
maybe your problem is HUGE… maybe it’s the problem of counting every molecule in 
the universe, twice. And if that’s the case, one day is actually miraculous. Moral 
of the story: always define the size of the problem. “Efficiency” only makes sense 
if you know the size of the problem!



How do you know if a program is efficient? (cont.)

Moreover, maybe time is nothing to you. You could be a time traveler.

(...with only 1MB of RAM.)

Here, it’s space you care about. How much memory is your program going to consume 
as a function of input size, compared to all other programs that do the same 
thing?

Programs can be efficient in different ways.



so as a tl;dr

Efficiency is relative.

To define efficiency, we’ll look at how many resources our program uses in 
relation to the size of the problem.

This is where orders of growth come in.



Orders of Growth, formalized

An order of growth is a function describing how something scales (usually a 
resource; time or space) with respect to some input.

You’ll hear things like this: “what is the order of growth of <function-name>’s 
running time, in terms of <input-name(s)>?”

Common orders of growth:

O(1), O(logn), O(n), O(nlogn), O(nc), O(cn)... [pretty much any mathematical 
function of the input can be an order of growth]



Orders of Growth, formalized (cont.)

Orders of growth allow us to 
assert that certain functions run 
more quickly (as a function of 
their input), or scale better, 
than others.

This is what happens when all of 
the 170 students run their garbage 
O(n4)-time project code on the 
instructional machines1 → 

1 This isn’t actually that great a representation of runtime growth, since a bunch of people are probably just looping 
indefinitely and running lots of instances.



Orders of Growth: Visual Examples

A rock; we could 
argue that its 
growth is an O(1) 
function of time

Age increases linearly over 
time, of course

The wheat and chessboard problem



A Rough Approximation

We don’t care about small inputs; we can always handle those pretty easily anyway. 
We care about what happens as the input size gets REALLY BIG (as it approaches 
infinity, even!). Small input sizes aren’t necessarily representative anyway:

(Thanks to Jerome Baek for this great visual!)



A Rough Approximation, continued

Asymptotically, only the highest-order term (or terms if there are multiple input 
variables) in the growth function matters. Therefore, that’s the only term we 
retain.

ex. n3 + 40000n2.1 + 26 becomes n3

For similar reasons we’ll also omit constant multipliers for that first term (it 
helps with standardization, and anyway we want to stay focused on the big – 
asymptotic – picture).

65√n + logn + log(logn) becomes √n



Summary So Far

An order of growth is just a function that depicts how stuff (like running time) 
scales. O(f(n)) means that aforementioned “stuff” increases no faster than the 
f(n)-class of functions as n gets larger and larger. This can be useful for 
guaranteeing efficiency in the temporal or spatial domain.

When determining an order of growth, do two things:

1. Drop lower-order terms.
2. Drop multiplicative constants.

Neither of these descriptors is asymptotically relevant.



Vaguely Mathematical Depiction
ft. big theta



Big-Theta

The definition of Big-Theta:

If we say that the order of growth is 
f(n), then there exist positive constants 
k1 and k2 such that the ACTUAL order of 
growth is sandwiched between k1·f(n) and 
k2·f(n) for sufficiently large values of 
n.

In this diagram, the “actual” order of growth 
is the red line. The blue lines are the upper 
and lower bounds. 



Big-Theta, cont.

If the growth function (e.g. runtime as 
a function of input size) is ALWAYS 
sandwiched between 0.5n and 1n when n is 
really large, then the order of growth 
would be Θ(n).

In other words, if k1 = 0.5 and k2 = 1 in 
the diagram to the right, then the 
running time can be said to be Θ(n).



Big-O

The definition of Big-O:

If we say that the order of growth is 
f(n), then there exists a constant k2 
for which the ACTUAL order of growth is 
BELOW k2·f(n) for sufficiently large 
values of n.

(Basically, it’s only the upper bound.)



Big-O vs Big-Theta

In this class (and in practice), you try 
to use Big-O as Big-Theta because it’s 
not very informative otherwise (i.e. 
pretty much everything is technically 
O(nn), but who cares?).

tl;dr Even though Big-O technically only 
refers to an upper bound, we want you to 
find the “tightest” bound.



Big-O vs Big-Theta

So if k1 = 0.5 and k2 = 1 in our diagram, 
we’d say that the order of growth is Θ
(n) ≈ O(n).



Determining Order of Growth



Approach

If faced with a function of unknown time complexity:

Go through the function line-by-line, determining approximately how much time each 
block of code takes as a function of n. Then add them all together (by “them” I 
mean your estimation for each region of code) and drop lower-order terms. That’s 
pretty much it.

If there’s recursion (which there will be), figure out how much work there is to 
be done in each call and how many calls there’ll be. Then multiply those things 
together.



An Example [Summer 2012 Final  |  Q2(c)]

def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) \

+ carpe_noctem(n - 2)

def yolo(n):
if n <= 1:

return 5
sum = 0
for i in range(n):

sum += carpe_noctem(n)
return sum + yolo(n - 1)

Question: What is the order of growth 
in n of the runtime of yolo, where n 
is its input?

Answer:
- Well, going through each line...
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def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2)

def yolo(n):
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An Example [Summer 2012 Final  |  Q2(c)]
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An Example [Summer 2012 Final  |  Q2(c)]

def carpe_noctem(n):
if n <= 1:

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2)
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An Example [Summer 2012 Final  |  Q2(c)]

def carpe_noctem(n):
if n <= 1: # this block is O(1) on its own

return n
return carpe_noctem(n - 1) + carpe_noctem(n - 2) # TWO recursive calls

def yolo(n):
if n <= 1: # this block is O(1) on its own

return 5
sum = 0 # O(1)
for i in range(n): # this block is O(n),

sum += carpe_noctem(n) # times whatever the OOG of carpe_noctem is
return sum + yolo(n - 1) # and then there’s another recursive call



An Example [Summer 2012 Final  |  Q2(c)]

Recursive call tree for carpe_noctem (authentic handwritten edition):



An Example [Summer 2012 Final  |  Q2(c)]

The call tree is a binary tree of depth (n - 1). There are at most 2k+1 - 1 nodes 
in a binary tree of depth k, which means that there are at most 2(n-1)+1 - 1 = 2n - 
1 nodes in this tree.

Each of these nodes represents a call to carpe_noctem, and we do O(1) work in the 
body of each of these calls, so a single carpe_noctem call produces O(2n) 
recursive carpe_noctem calls and O(1) * O(2n) = O(2n) work overall. Conclusion: 
carpe_noctem’s growth function is O(2n).



An Example [Summer 2012 Final  |  Q2(c)]

The call sequence for yolo, meanwhile, is a lot simpler. It should be clear from 
the above sketch that yolo(n) involves n calls to yolo. Accordingly, we know that 
the stuff in the body of yolo happens n times in total.



An Example [Summer 2012 Final  |  Q2(c)]

def carpe_noctem(n):
# stuff happens here, but all we need to know is that it’s O(2n)

def yolo(n):
# O(1) stuff
for i in range(n): okay, we do the stuff in the loop n times

sum += carpe_noctem(n) # carpe_noctem is O(2n)
return sum + yolo(n - 1) # and then all of this stuff happens n times again

In conclusion: the body of yolo is O(n * 2n), and then that code gets executed n 
times. Therefore yolo is, holistically speaking, an O(n * n * 2n) = O(n2 * 2n) 
function because that’s how much work we do as a result of one yolo(n) call.



General Heuristics (Not Guarantees!)

Warning: this stuff definitely isn’t always going to be true (especially in the 
case of exam questions designed to filter out confused students).

- When there are c recursive calls in the function body (tree recursion), there 
tends to be O(cn) calls overall (exponential growth).

- Double-nested for-loops tend to indicate that you’ll do the stuff in the 
inner loop n2 times.

- If you make multiplicative progress during every step (e.g. by dividing 
problem size by 2 or multiplying something by 3), it’s likely logarithmic 
growth.



Individual Function Descriptions (+ Exercises)



Live Answer Submission Link

(Process: I review one classification at a time, and present a function after each 
one. Your job is to identify the order of growth of each function’s running time.)

It’d be great if you guys can anonymously submit your answers as we go, so I can 
see how you’re doing and figure out how difficult everything is.

Link to live / anonymous poll: [edit: done through Poll Everywhere, see alt. 
version of slides]



Don’t worry if your answer is different from everyone else’s.



DISCLAIMER   In the following slides, we treat the 
growth function as a runtime descriptor. However, 
note that orders of growth can be used to describe 
any phenomena that scale as a function of their 
inputs (memory is another big one, for example).



DISCLAIMER 2   I say Big-O in pretty much all of 
these slides, but I’m really only doing that because 
“Θ” is a damn pain to type.

I say Big-O, but I mean Big-Θ.



DISCLAIMER 3   I have a lot of slides on OOG. But 
if you’re primarily concerned with exams (not a 
perspective I recommend :/ ), don’t expect this to 
be representative of a topical distribution on a MT.
...OOG is usually like two points on a test.



O(1)
Constant time. Best order 
of growth for scalability; 
runtime is not affected by 

the input size.

def const(n):
n = 902 + 54
return ‘hamburger’



O(logn)
Logarithmic time. Amazingly 
scalable; a multiplicative 
increase in input size 
leads to an additive 

increase in running time. 

def loga(n):
if n <= 1:

return 1
return n * loga(n // 2)



Exercise 1

def mystery1(n):
n, result = 5, 0
while n <= 3000:

result += const(n // 2)
n += 1

return result

Reminder: we want the order of growth of the runtime a function of n.
Example answers: O(1), O(n), O(n2)...



Exercise 1 Solutions

def mystery1(n):
n, result = 5, 0
while n <= 3000:

result += const(n // 2)
n += 1

return result

O(1).
Notes: The input n doesn’t even matter!



O(√n)
Square-root time, aka 

knockoff logarithmic time 
(runtime still increases 
slowly with input size). 
Better than O(n), but 

rarely observed.

def sqroot(n):
lim = int(sqrt(n))
for i in range(lim):

n += 45
return n



Exercise 2

def mystery2(n):
if n < 0 or sqrt(n) <= 50:

return 1
return n * mystery2(n // 2)



Exercise 2 Solutions

def mystery2(n):
if n < 0 or sqrt(n) <= 50:

return 1
return n * mystery2(n // 2)

O(logn). sqrt(n) <= 50 is equivalent to
n <= 2500, so this ends up being a standard 
logarithmic-time algorithm



O(n)
Linear time. Still very 

scalable; adding a constant 
to the input size also adds 
a constant to the runtime.

def lin(n):
if n <= 1:

return 1
return n + lin(n - 1)



Exercise 3

def mystery3(n):
result = 0
for i in range(n // 10):

result += 1
for j in range(10):

result += 1
for k in range(10 // n):

result += 1
return result



Exercise 3 Solutions

def mystery3(n):
result = 0
for i in range(n // 10):

result += 1
for j in range(10):

result += 1
for k in range(10 // n):

result += 1
return result

O(n). The number of iterations in the j-loop 
is based on a constant, and for large values 
of n (specifically when n > 10) there are 0 
iterations in the k-loop



O(n2)
Quadratic time. Still 

polynomial, so it could be 
worse; multiplying input size 
by a constant factor ends up 
multiplying the runtime by 
the square of that factor.

def quad(n):
if n <= 1:

return 1
r = lin(n) * quad(n - 1)
return r



O(2n)
Exponential time. Not 

scalable at all; identifies 
problems as intractable. 
Adding to the input size 
multiplies the runtime.

def expo(n):
if n <= 1:

return 1
r1 = expo(n - 1) + 1
r2 = expo(n - 1) + 2
return r1 * r2



A General Timing Comparison

n = 10 n = 50 n = 100 n = 1000

logn 0.0003s 0.0006s 0.0007s 0.0010s

sqrt(n) 0.0003s 0.0007s 0.0010s 0.0032s

n 0.0010s 0.0050s 0.0100s 0.1000s

nlogn 0.0033s 0.0282s 0.0664s 0.9966s

n2 0.0100s 0.2500s 1.0000s 100.00s

n6 1.6667m 18.102d 3.1710y 3171.0c

2n 0.1024s 35.702c 4x1016c 1x10166c

n! 362.88s 1x1051c 3x10144c 1x102554c

← Time required to process n 
items at a speed of 10,000 
operations per second, using 
eight different algorithms

s = seconds
m = minutes
d = days
y = years
c = centuries

Source: 
http://www.ccs.neu.edu/home/jaa
/CS7800.12F/Information/Handout
s/order.html

http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html
http://www.ccs.neu.edu/home/jaa/CS7800.12F/Information/Handouts/order.html


Graphical Summary



Exercise 4

def mystery4(n):
if n > 0:

r1 = mystery4(-n)
r2 = mystery4(n - 1)
return r1 + r2

return 1



Exercise 4 Solutions

def mystery4(n):
if n > 0:

r1 = mystery4(-n)
r2 = mystery4(n - 1)
return r1 + r2

return 1

O(n). The first recursive call can never go 
anywhere



Saving the best for last:
a single slide on the Tree class



The Tree class

You guys already know trees. This is the same thing as the ADT version, except 
formalized using Python’s object system. You can mutate these trees by modifying 
their attributes. Yay!

class Tree:
    def __init__(self, label, branches=[]):
        for b in branches:
            assert isinstance(b, Tree)
        self.label = label
        self.branches = branches

    def is_leaf(self):
        return not self.branches


